
RD-Al?? 974 CONCURRENT OPERATIONS IN EXTENDIBLE HaSNING(U) ALFRED P 11
SLOAN SCHOOL OF MANAGEMENT CAMBRIDGE MA CENTER FOR
INFORMATION SYSTEMS RESEARCH M HSU ET AL. FED 9?UNLSSIFIED CISR-TR-2 N63 -C-S5 F/ 92 NML

S. °.' - I -

- L 1.8
IIII - -Ji

-.4ROCOPY RESOLUTION TEST CHART

NI

i'M)'

~~CONCURRENT OPERATIONS .

IN EXTENDIBLE HASHING-.

Meichun H~su
Wei-Pang Yang

February 1987

II ,

. A
-- l Thi- document has been umm~

I~~~~f or p u b l i c re l e a s e a n d M iZs Il a , nm

0J

~Center for Information Systems Research

_..5.

Massachusetts Institute of Technology
-iSloan School of Management

77 Massachusetts AvenueCambridge, Masschusetts, 02139

787 3 11 012

Contract Number N00039-85-C-0571

Internal RePort Number M010-8702-20

CONCURRENT OPERATIONS :

IN EXTENDIBLE HASHING ".'

Meichun Hsu
TAei-Pang Yang

Technical Report #20

February 1987

Princial Investigator:.....

Professor S. E. Madnick .. :

Prepared for : -.

Space & Naval Warfare Systems Command --= -
Washington, D.C..,.-

Unclassified
SECuRITY CLASSIFICATION OF THIS PAGE (*%m Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONSR DBEFORE COMPLETING FORM
I REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

Technical Report #20 17 14
4. TITLE (and Subttlet) 5. TYPE OF REPORT & PERIOD COVERED

Concurrent Operations in Extendible oR_._UBER

Hashing 6. PERFORMING REPORT
M010-R702-20

7. AUTHOR) . CONTRACT ON GRANT NUMBER(e)

Meichun Hsu N00039-85-C-0571
Wei-Pang Yang

I. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM LEENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

Center for Information Systems Research
Sloan School of Management, M.I.T.
Cambridge, MA 02139 ____

I1. CONTROLLING OFFICE NAME AND ADDRESS I. REPORT DATE

February 1987
13. NUMBER OF PAGES7

I&. MONITORING AGENCY NAME 6 ADORESS(Il dlfferent fom Controlllnd Ofice) IS. SECURITY CLASS. (fl thio Pepoff)

ISa. DECLASSIFICATION/OOWNGRADING
SCHEDULE

I. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abforect mntered In Block 20, it different Itoat Repot)

I@. SUPPLEMENTARY NOTES

It. KEY WORDS (Continue an tresverse de it noeesoary ,ad Identify by block number)

Concurrency control algorithms, extendible hashing, search
algorithm, insertion algorithm, deletion algorithm.

20 ,AOSTRACT (Conctnus on r,.'.ee ide e f I coeery and Identify by block number)

An algorithm for synchronizing concurrent operations on
extendible hash files is presented. The algorithm is deadlock
free and allows the search operations to proceed concurrently
with insertion operations without having to acquire locks on
the directory entires or the data pages. It also allows
concurrent insertion/deletion operations to proceeO without
having to acquire locks on the directory entries. The

DDO 1473 EDITION OF I NOV S, IS OBSOLETE
S/14 0102"11401601 SECURITY CLASSIFICATION OF THIS PAGE (When Data Enterd)

Unclassified
. I CLASSIFICATION OF TiS PAG.(Whef Date Enerwed)

,-algorithm is also unique in that it combines the notion of
verification, fundamental to the optimistic concurrency control
algorithm, and the special and known semantics of the operations
in extendible hash files. A proof of correctness for the
proposed algorithm is also presented.

i.6

. 1

p

% %r

I

-, SECURITY CI.ASSIICATION Or THIS PAGEIr Pahi Dan EAOleP.d)

z. 1

Concurrent Operations in Extendible Hashing

Mleichun Hsu
Wei-Pang Yang

Harvard University
Cambridge MIA 02138

Maisrwct, known semantics of the accome to the directory entries, it is con-
An ~ ~ ~ ~ ~ ~ ~ ~ ~ cial algoith oor tanoilgcocretoertoso deai concurrency control algorithm tham
An agorthmfor yncronzingconurrms oeraion on minimiz, such overhead.

extendible hash Blom in presented. The algorithm is deadlock free .peetaocrecyonolagihm htalwsheJ
and allmns the search operations to proceed concurrently WithWepsntactu cyotrllgihmht&Bw h

insertion operations without having to acquire locks on the direa- search operation in an extendible hash dile to proceed without hay-

tory entries or the data pages. It also allows concurrent ing to set locks on the directory entries. We also allow concurrent .
insertion/deletion operations to proee without having to cur insertionsi to be synchronised with a mechanism which is simpler

locks on the diretory entries. The algarisha is aiso unique. inta and potentially able to offer a higher degree of concurrecy.
it combines the notion of verification, fundamentali to the optimi.. The algorithm is aimo unique in that it utilises the general
tic conicurrency contro algorithm, and the special and known mechanism behind the optimistic conicurrency control algorithm
semantics of the operations in extendible hash Rile. A piroof of " 11il. Bly making use of verification at the right moment, opera-
correctness for the propoeed algorithm is also presented. tions are guaranteed a consistent view of the data structures

required to ensure their correctness while minimizing the locking
overhad.

1. Introduction The structure of the paper is an follows. In the next section,

The concurrency control algorithm in a conventional data. the general mechanism of the extendible hashing scheme is
base management system enforme serialiaaibility of transactiono reviewed. In Section three, we present our concurrent search and
(Papadimitriou7ij. Each transaction is norallfy modeled as a insertion algorithms, followed by a proof of correctness in Section
sequence of read and write step, and the correary control algo- four. Section Aive conclau the paper and presents a discusson of
rithm *nforces sraihliywithout assuming much knowledge of future extensons.
the semantics of the read and Write noep of the transactions.
While this level of generality enables the contumency control algo. 3. Review of Extendible Hashinig

* rithmt to be applicable to any traaseetios system, it doe nt take Extendible hashing FNPS701 is a file structuring and search-
advantage of the structures inherent in the applications to optimize ig technique in which the user is guaranteed no more than two
for higher level of concurrncy and lower synchronization over- page acces to locate the data ssociated with a given key.
had. Unlike conventions' hashing, extendible hashing has a dynamic

*In ecet& yewsn specialized concurrency control algorithms structure that grown and sam~ gracefully asi the danahase grown
that tests advantage of the imawledge of the soracu and/or the an.d shainlm.
se mc of transActn have appeared I"~g, SK30. XMU, 1F79, The file oe of a directory (D) and data pages. The
HM83, HC85, OW61eli1. to particular, much asenion. has beens directory is charsactorssed bry a piei depth 1, and contains 20
paid to the optimizto of algorithms5 that synchonism concurrent entries, each of which points to a data page. The hash function. h. 1
operazions on B-trees le.g.. B577, LY81, vOM.5I. transforms the keys of the key set into a "pseudo ktey' of a bit

In this paper we present an algoritm that synchronze con- form; the firet g bits of the pseudo key determine the directory
current operations on a file structured esng extendible hashing entry corresponding to a key. Each data page is characterized by
TNTS7gl. Extendible bashing in a form of dynamic hashing which a Iecai depth 1<#, and a bit pattern 4V of length 1. A data page
adaptively updates a directory of pointers to data bucket, or data with an 1-bit bit pattern ip contains all keys the first I bits of
pages. Since the directory entries are subject to update at any whose pseudo keys conform to the bit pattern ip When a data

moment, a search operation would norally be required t* obtain a page overflows, Ats local depth is incremented by 1 and the page i

lock on the directory entry it reads to prevent the directory entry split in two: one page is now characterized by a bit pattern which
from being inadvertently changed. However, by exploiting the is the old bit pattern concatenated with an additional bit of '0' and

the other, with the bit of T'.
Example. Consider the state of an extendible hash file as

shown in Figure 2.1. Currently there are vy few records with
pseudo keys that begin at T1. All such records are collected into a

VL-O3 bLsingle data page whose local depth is I and whose 1-bit bit pattern
is TI. When the page becomes full, as shown in Figure 2.2. it splits
into two data, pages, each with local depth of 2: one data page now
has a bit pattern of '10' and the other '11'. All keys who"e pseudo
keys begin at '10' appear in the first of these data pages, and al
keys whose pseudo keys begin at '11' appear in the other.

%

When the data pae whom locl depth equal the global The extendible hashing scheme was a contiguousiy allocated

depth of the directory overflows, the directory size is doubled, i.e., directory whose size changes by factors of two. It enables direct

the global depth is incremented by 1, and the overflowing data access to the right data page (or bucket). No overflow area is

page is again allowed to split. For example, if we start with the used. In [FNPS701, it is shown that, in the case where the bucket

situation as shown in Figure 2.2, and if the data page pointed to (page) site is 400 and the size of the key set is 40,000, the storage

by the '010' pointer is already rull, then the directory is doubled utilization, on the average, is about 89%.

and the page splits, a shown in Figure 2.3. (Figures 2.1 to 2.3 are
taken from Figures 8 to 10 in (FNPS7j.)

Direetory Date pesu

~hi-I.00.n.

Depth t

Directory Date per". 000 ,eLsesa M1-4110...%
h(-),40. SOgL Poiner

$10 Poera
M,-1ee... Lo Poter"

Depthg W Po tere 19.
@6 Pouer ht-)-410... L10 Pauecae " "

1 o00 - , _n..az I I',,-,-o " ---- ,. . o . .

1al pouter 31
OLO pe~er i

Fit. L. A directorwith P-J. FPt. LL A Pots a is l two sle Pt. pgs.

',1"

* Directory Dess peys

ht(--0 ...

Depthi 1 .
0oc POnA W-...

0O10 Puoasenaewr t - , -

0011 ,oa,,eat , - l()l,. , .

4010 oss

0110 Pointeri
o L Pointer I ,9 -9 I.

1.110 PoLnca .
010 Petnaat
LOCO1 PoLaee:

lit-P-LI.. -LOLL10 Pounter
1101 Pouater
LIOI Pouter (-L
*LIIO PoLatces

11.1.11 101...C

Fig. LS. Directory doubled wlh r4-.

•, .

3. Conceurent OperatioU im Fztendlble Haslng What the search operation is vulnerable to is the concurrent
insertion operation that splilt a data page and relocates a range of

In t"is section we deribe the algorithm of our concurrent the keys that include th. key desired by the search operation.
operations in extendible hash fles. Throughout we will ignore the This type of interference can be eliminated by requiring the search
isue of underflow and compaction. In other words, the number of and the insertion operations to obtain a lock on the directory entry
pages of the file only growe and never shrinks. The compaction and hold it until the operation ends. In our search algorithm, how.
issue was also ignored in (LY1 and is generally justified by the ever, this typo of interference is avoided by re-reading the direc.
observation that databases tend to grow and the utility of the tory entry when a search operation could net find the key in the
storage recovered from on-line real-time compaction may not be data page it has just read, without having to hold any lock on the
worth the trouble. Compaction can be handled by taking the directory. This form of re-reading, or verification, continues until
database olfine for a reorganization, either the key is found, or the value of the directory entry does nor

change between two consecutive readings. The algorithm is for-
3.1. Search Algorithm mally defined shortly.

The search operation on an extendible hash file consists of (1) Intuitively, the search algorithm attempt@ to veany the direc-
applying the hash function to obtain a pseudo key, (2) examining tory entry it has previously read before it would conclude a search
the first I bits of the peeudo key to determine the directory entry failure. If the content of the directory entry ha changed in the
to be read, (3) reading the directory entry to Band a pointer to the mes time, the search operation automatically retriee with the new
data page to be searched, and (4) searching in the data page to prnter obtained. A formal proof of correctese of the algorithm is
And the key deeir". prented in Section 4.

Defailsm of the Seuth Allotli k.

Algrithm Seareh(given key k)y
begin

inimialisatiol
xold:-O:

hashing.
calculate k' - h(k)- bel, • 4,2 ;

cotpoiats.
mad d, base /. the global depth and ber addrem of the directory D '/
t :m , .".. 4;/" take the initial d bite of k''/
x w "get(l)(t; /" D(q ise tth enty i D/

probe:.
do while x 0 Xod:A .- psxy; /" read al data pap "

if key k in A then 'mccem-', returf(x); /e ends search /
xel r,- ic;

x -- ,t(D(q); /" re-read directory /
end.

return ('search fails');
and;

3.2. Inaet on Algorithm

The minurt i oem o in a an extendible hash file cons of ing updates on the d" page. If verification f". the operation
(1) applying the hasking function to the key to obtain the pseudo would unlock the paup and lock a different one. and perform
key, (2) examine the fie f bi ts of the pseudo key to determie the another verification. The insertion operaion never blocir once its

directory entry to bhe res. (3) reading the directory entry to obtain fist lock is granted, therefore deadlock is eiinnted.

a pointer to a data page. (4) reading the data page to search for In handling splittiag, oUr tlgonrthm requires that the newly
the existence of the same key, and (5) inserting the key in the data allocated page be locked until the affected directory entrylentnes)
page, if the key does not already exist. When inserting the new is~are) updated. Inherent in the drnamic hashing algorithm,
key, it the data pap is full, then a split is performed, rm ulting in a however,. is the complication that when a key k is to be inserted
new data pag to be created and at lafst one directory entry to be into a page which is already full, one split may not be enough.
updated. For now we will ignore the uise of directory expansion When splitting occurs, the local depth of the splitting page is incre-
(i.e., doubling in size). We will revisit this mine briefly in the final mented by one and a new page is allocated in the database. The
section of this paper, original key range in the splitting page is divided in half, with the

Two insertion operation may interfere eveS when they I higher half distributed into the new page and the lower halfTwoei insertn kera. tindsmable interference may be elm- retained in the splitting page. One of these two pages say , now

iafed by requiring the insertin operation to hold locks on both contains the key range that includes k. It is noted that in extreme
the directory entries ad the dat peP that it updatesll the end case p may be full again before k is inserted. This occurs when
of the operation. In our algorithm, however, the need to hold locks all the existing records in the splitting page are all hashed into the

on the directory entries is avoided by requiring the insertion opera- halved-key-range that contains k. When this occurs, p needs to be

tios to perform vrificaeion of the content o(the directory entry it split again before k can be inserted. This prcess must continue

has previously rad oflr locking the data page and before perform- until k finally falls in a page which is not full However, the

% .. '

number o split& required, ad therefore the number of new pages updated all in one atomic action. It is amumed, however, that

need to be allocated to allow k to be inserted, can be determined updating any single directory entry is atomic, s well as writing

from the Contents of the splitting page When it is fint examined. sny single data page to the dabase.

We will denote this number to be a. In general, a ranges from 0 We provide the definition of our insertion algorithm below,

t og('i1 where d in the global depth antd .d is the local and the formal proof of correctness is presented in Section 4.
depth of the splitting page before splitting.

The way our concurrent insertion algorithm deals with the 5.3. Deletion Algorlthm

above complicstion a to (1) have the splitting page as well as a A deletion operation in an extendible hash file consists

the newly allocated pages in the database locked, (2) rearrange roughly of the same set of steps as the insertion operation, except
contents of these pages in privat work space and allowing k to be tha it neds not to deal with the imue of overlow and pae split.

inserted, (3) write the rnewly allocated pages back to the daLabas, ting. For our purpose, as mentioned in the beginning of this sec-
(4) updase all the affect d directory entries, (5) unlock all new tion, we will ignore the isse of underfiow and compaction. There-

pages, (6) write the splitsing page back to the datbse, and nally fore Syntactically a deetaion operation is just like an insertion
(7) unlock the splitting page. One may choom to combine steps () operation that does not encounter overilow. For brevity, we do
and (7) together as the Ia step, but thb is not srictly necm ,ary. no include a forma delntio of its algorithm.

Note that during the entire operalm so directory eatrim reo

locked and al march opoeewom proceed wMithst being blocked. In

particular, in step (4) above, when multiple directory entries we
updated, they ar updated one by one without having to be

Dsisiv s/ Ike Ijerien A4M*~m

Algorithm Insert(&-ve key k).
begin .
baskiap

Calculate k' w, h(k)- bob l .. • ,; %

getpointer:
read d, be;/* the giobl depth &ad b eaddrem of the directory D*/
.- bet ... b..4; /* take the initial d bit@ of k' /

x .- ge(D(); / D1t is the t.th entry in D /

zold :, x .
lock (x);

.r

z:-- gel)(t); /" re-red directory try /
do while xold 0 x /0 veriicaton loop/

unlockxj;
sol .'m r;

z .- gcD(qt); /" -rea "/
lock (x);
end:

probe:
A - g e z-p); / read data pag p poiaod to by z A"

if key k in A thus 'eor dupicasma', reM

cas s.1. < c /0 no ned to splim.w he c inteh capcity of a pa "/

A pn.- asef (A.k);
cae 2. - c /" split re"zed: amume so directory doubling ,'

a - number of new pages requtred;

1,g,---,g..- allocate new pages in dsame;
lock (vs,...u.); /* keep new pages locked "/

A. B,B,,-. . - resarOge old A and Bps. adjust L.d, insert k:
fort- t tondo:

put (Bij,-P); / w-te B's into database /
end;

dirouorT.modify(D,rt,..,r.);
unlock (v,.,j.);

put(A, Z-p);unlock(-);
end;

The function of directory.modify in

Procedure directory.modi-DI,...);

for all directory entries i affected by split do;
i :- subscrpt of newly allocated page contauning key range of entry j;

put (,. Dl);
end;

end;

.4

op
,.' - "€--- -."- ".e%- ,P"."".P." "'-%- . _.jr_",+'_... - " . + . % '. ., ") . ,t :,; , . ., , a ,., id-,,.,,. m ,,--...

3.4. Dicissiost of Pertormaiine Assumptions:

In this subsection we briefly disiuss how our proposed algo- (1) The dattabases is Ainite in size. In other words, there exists a
rithin compares with "itandlard techniques*. To our best bound on the global depth.
knowledge, there hss been little discussion of concurrent operations (2) Each search /insertion /deletion operation consists of a
in extendible hashing in the literature. Therefore w will assume

-!MU sequence of read and write steps. Each read/write step
the 'standard tacinique* in this case to be twro phsse locking involves a isle frenu/e which is either a directory entry or a
(2PL). Using 2PL, a search operation must (1) obtain a shared- dais pule. We assumne that each reud anid write step on such
lock on the directory' entry, (2) obtain a shared-lock on the data data transit 4 Ieeriintd to ie etomnie by the underlying
;ago pointed to by the directory entry, (3) perform meach and system, on top of which the current algorithms are imple-
then release both locks. An insertion/deletion operation must (1) menited. In other words, we assume that the jet and put steps
obtain an exclusave-loek on the directory entry, (2) obtain an in the definition of the algorithm are atomic steps. Note that
exclusive-lock on the data page pointed to by the directory entry, this assumption can be supported by a synchronization
and (3) perform updates and release both locks. If the insertion mechanism at a lower level it necessary.
encounters the need to split the data page, it must additionally In order to provide a proof of correctness the criterion of
acquire exclusive locks on all directory' entries affectied by the split correctness must first be articulated. We firet give the following
before updating these entries and before relesing ear lock that it definitions before we discuss the criterion of correctness.
has acquired.

We Ba sow te& he sandrd ochnclu is ron toDeiamusas. A otilisls is a sequence of stepe, euch of which

deadlocks, Consider two adjacent directory entries d, and d, isithfomf .Ol TeaconAanbrad()rwie
pointing to the same data paep where is currently has a local (W). The dwat granule is x, which can either be a directory entry,

deph wic is1 eas tan hegk"deph.TwoInertonopea. denoedas d, or a dapage, denotedawsp. OP isan operation,
depwhichais 1 I tan th ce globa ae d epth Two~ i5to 4 pea which may either be a search operation, denotsed an S, which eon-
the. ote and its ar rondre owith ngd inerlemaved toecutian sists of two steps Re and R, or an insertion/deletion operation,
thlne sher the stCondr thne loigitrlae zct denoted as 1, which consists of atleast three stepe Rs, R, and W,.

sequnceusig th stndad ~(Additional W, and We may also appear in an insertion operation.)

It locks 11; ~An operation can also be denoted. together with the key kof the
A loks ~record to be operated on, as S(k) or 1(k).

r, locks dl;
1A locksap; Exam ple. An example of a schedule is
r, reads p and encounters overflow-,
11 attempts to lock db <7R,(S),R(,R,(S),R5(I),R,(J) W4(f) W,(1)rR ,(), W,().>,

1, tteptsto ockp;in which three operations SJ and arwe involved
The two operations are now deadlocked. Deftnsiteas Lot A and A' be two seeps in a schedule, We say i

Also, using the standard technique, while a search operation that A <A' if A occ rs before A' in the schedule.
is never blocked by another serh operation it may be blocked by Eatenjil. In the above example schedule. ,(1 < !kWA!).
an insertion operation, and vice veins. In our algorithm, a sarchs Criterion of Corectness. The unit of saomicity used for the
operatio. is never blocked by an intion operation. Furthermore, pupos of dala corr~ectnes is the operation. In other words, the
in our algorithm insertion operatiuns do not have to acqunire a lock algorithm is correct it any interleaved schedule C that the algo-
on the directory etry before reading it, resulting in savings in rithmn allaoe ia equemelat (IAs, kouii ce ait net tffect) to *eine
locking overneaid. The exact nature of the performance of the serialized exeuin SE of the minse set of operations, subject to an
aigoithus as compared to the smadard techique would -'~f aduie cditinal restrctions to be described in the next paragraph. The
addi~tional 5fstint. notion of -having the mass net effect' is demed as foilowsc. if a

While th. pVoose algorithmn offers freedom from deadlocks, seaircn operation fsinsaceed With record r) in C it also
potentially highr level Of COncurrncy and MMvIN 0 ine cng over- failodsuceeeas with reor r) in SE. and if an insertion/deletion
head, it an coneupeally simple and should be iosn as smay, if not operatin suesoeda(fails) in C it aim succeedifaiis) in SE.

- -,r to implement. The only additional cost, in the p opom5 We Amrs mosivute the additional resuction. followed by the
aignaha is~ tos prom vertAcaton fthe achoptertion2 the i- formal deinisuin of the criterion of correctnes. It is spurious to
to"enraeilay read. oi pefom erficatio f tecntende ol thenc consider an interleaved schedule C correct if it resuits in a failure

toryenty prvioslyread Ths veifiatin isneeed oly hen of a search operation. (ie.. the search operation does not Eind the
the key deanre is not found. The maseruon algorithmn is always key it is looking for) while the search operation starts in C after an
required to perform verification. However, it can be argued that, insertion operation that inserts that key has 6nished its last step.
when a verification is performed on a directory entry, the likeli- For example. cc-sider an interleaved schedule C -
hood that the Ilttr is memory-resident (i.e., in the buffer pool) is <.,,I,.,,S,.>adasm ht(net e npg
very high. This is true even if one does not in general keep the adW()i t esp ace o e n al.adn

imur diectry n mmor. Tereorethecc"of eriicaiondue deletion operation is involved in this schedule. While one may Aind
to re-reaiding the directory entries is but a few memory acciess the net result of schedule C equivalent to that of a serializeid exe-

and an b lagelyignoed.cutin where S is run before 1, it is meaningless to consider C
correct. Therefore we define a more meaningful and more intuitive

4. Proof of Correctnes criterion of correctness, while retaining the basic notion of atomi,

To show that the above algorithm is correct. we use the fol- city atthe operation level, as follows- 1
lowing steps: A schedule C of an interleaved execution of a set of
(1) Show that all operations are deadlock-free and will terminate,. search and insertion/deletion operations is correct if the
(2) Show that the search operation is correct, net effect of C is equivalent to some serialized execution

(3) howtha theinsrtin /eleton pertionis orrct.SE of the same set of operations 3.t. if the last step of
(3) howtha th insrtin/dleton peraionis orrct.OPI is before the first Step Of OP2 in C then OP2 is

before OP2 in SE.

in* T~- .W--'V

dia Prof f Trsoinaion(3) Rd(S)<W() nd W(j)<R(S). In this case, the V', step of

Lam. Proo Aof perations aniae SMt would have read the new pointer (i.e., to p') which is Dot

Lemm I.All pertios teminte.equal to the Old Pointer (i.e.,to p) read in the Rd step, con-

Proof. Since no operation would hold any lock while waiing tradictory.
for another, no circular wait-for is possble, therefore no deadlock is (4) RS)<;Wd(J) and R,(S)<W,(!). In this case, S(k) would '

posaible. Therefore the termination proof amounts to proving that read Uti old content of Page p before I relocates k out of p,
the potential loop in the operation will terminate. All operations contradictory to definition of I.
potentially involve a loop of re-reading a directory entry. Given anThroewecnldthttreeienonsronpra
operation 0 that involves such & loop.. the loop in 0 terminates Tio hatecourd he oceat ote bfre S) noisreads operas

when the content of the last directory entry read is the same as tio lIthdatacul page reoaeoteint o n. Ter efore th) seasp sh.
that of the previous directory entry read. The content of any itlatdapgeoradbfe smatn.Trfreheerc
directory entry would change only when a split occurs in the data operation is correct.

page that the directory entry points to. Since the number of times Combining (i) and (ii) above we conclude that the search

that any data page can split is bounded by the logs(N), where N is operation is correct.
the maximum number of pages allowed in this system, i.e., it is
bounded by the maximum global depth of the system, the number 4.3. Insertion/Deletion is Correct
of times the value of a directory entry wil change is bounded by Since search operations do niot update the database, they
logs(N). Therefore the loop of re-reading the directory entry in 0 would not affect the correctness of an insertion operation. There-
wil termiate, fore to prove that insertion operations are correct we need only to

take into account interferences among insertion operations them-
4.2. The Search Operation Is Correct "elves, and between insertion and deletion.

Liens L The search operation is corret. We introduce some notations; to refer to Specific steps Of an d

Pro. To prove thaa. search operations are eorreetk we Byves- insertion/deletion operations. We an interested in the tailing end

tiguet wht could possibly be the cause for it to be incorrect. of the steps in these operlations, iLe, thoem in the final round of the

Since all search operations terminates, they eithe succeed or fail, verification loop ad those at the very end. The sequence of the

We consider elach of these two case separately. read/write steps of the last round of the verifliation loop of an

(i) If a search operation S succeeds, i.e., it it finds the key it insertion /deletion consists of <R,,L,,V4.>, where L, stands for

is looking for, then it must be correct. This can be shown as exclusivet lock of p, V, stands for the step of verifying the content

follwe.Suposetherecrd t fndsis . Ten her mut eistma f the directory entry read in Rd. We denote Rd and Vg in this
insllo .. Spoeto . thaor t insia r. Whnee an s const a last round of verification as R'4 and V*,. Note that by definition.

inse~ionopee.Lin Ithatinsrts . W cancontruc an the content of the directory entry read in R', and V, muss be
equivalenst serialised execuatio, in which I is before S. If there also Identical. After the last round of verification, the page pointed to

exiss adeltio opeatin I whch olde rtha inthA by the valuet read in R', is read. We denote this step as A',.
equrvalent serialized eacutma we m-s alet 1, be after S. This
equivailent seridaliseid execution is legal (according to the definition The final sequence of steps of &a inaleition/deletiom operation that

of correcusaees) s long as the lst step of 1, did not come before dosntivleapt.<W,,,whrWnd ,sadfr

the first step of S in our interleaved schedule. Suppose the Is" surtpn noko te~~ hc a lce ewe n

of I4 did come before the first step of S. Then the only way for r We during the lasta round of verificaion. The sequence for one

to stilllinger in the databse when 3startis for ittobe in am* involving a split.i <W,U,W,,U,.>. where U unlocks all new

data page p from out of which r was reloeated (iLe., via page split) plages, and We is the lst directory entry update. We will deote

to a different page p', from which fd deleted r. and p is still in a these last steps of directory update and page write as W', and

transient sat containing r. Howseer. if 1, is finished by the time S We,. Note that. the directory entry Written in m% ay not be

starts, the directory entry corresponding to r would have already &he same entry read in R ',or V',.

he Pning to P'. S therefore could a"e posetisky ges ace..i to p. Defausien. Let I be a insartacn/diee operation. We

Therefore the last seep of r, could nsi. comei before the fiat seep of define the range of the keys reioeates by I as the ,mgretsu 41et of

S in our intsiaved schedulle. Therefore the equsialent, seriaiized L denoted s miraede(I).

execumins i legal. Therefore the search operaos.i corret. Since the deletion operain never resocaces any reca.d, its

(ii) If a search operation S fails, it could fail incorrectly only aigratio set a obviously empty.
whe* concurrent relocation eaMAte In other words, we wan&to ~ Lemma S. Any two concurrent flasertiofldeletion operations
show that if a search operation S(k) fads, and -the tai data pag 11 and 4, always inerleaive correctly. *r

read by Sik) is p, then there eu no insertion operation I such F

that reocaes he ey angeconaanngkfro ~ ~ ree!. at* the kery to be operated by!11 be k, and that by 11

5(k) rads p.is k,. Assume without lows of generatv We dpR 1 ..
Slit) reads p.consider the following cases. and for eaca caser we snow that they .4

Suppoee that there exists such an insertion operation 1. Let d interleave correctiy.

finishing, would first write the directory entry d ad then writes p. (1) metirelmea(! 1 contains k.,. Thben 1, must update the direc-

We denote these stoe a W1(t) and W,(f). We aim denote the tory entry for k,, denoted as d& that I. need% to read. Two

final steps of S(k) in reading directory d, reading pape p, then re- subeases; are considered. (i) L4 reads d4, in the final round

reading (i.e., verifying) directory d as R4(S),.R(S) and V4(S). By after 11 updates it. i.e.. W, (1)<R',(1) where W,, (Ij) is

definition of the failed search operation, the value read in R,(S) the 1tpi hc pae , hnI antra h

would be equal to that of V4(S). There are four cases of posible
interteavingp page pointed to by 4, it read until 1, relees the lock on it,

(1))Rs W4 W(1)<RR4 (S) ma In this case, since I reain. by which time 11 would have finished all its operations on
W,(J<'R,().direc tories. Therefore the only deptndency that the

cates k from p to p', the directory entry read by S(k) should directory entry operations can possibly induce between 1,
not contain a pomnoer to p, therefore S~k) would not have and I1 are 1, giving to 11. Since 11 will not read or write LAY N

read p. contradictory., data pages after 41 writes them. the only dependency that

(2) W(1)<R,(S) and R,(J)<W,(S). In this cue, similar argu- the data Page operations can induce are Laso 1, giving to .

men& as above. S should not have read p, also contradictory. Therefore any interleaving between 11 and 11 is eqilvalient La

% 7'

UV SWfl' w pirCwvW'nW U-r ryr-11 SrVY rip~ ,,~tr rt. -. 77,

serializing 1, Weore 4, theefore they ame cornet. (ii)
W,.,(IJ)>R'(,. iLe.. r, reedsi 41 before I, updates it. In References
thie cane It will be forced to wait till 11 releases its lock on
the page it ie Splitting. by which time w,, (r) would have PS7
already occurred, which means V4(12) would have failed, Bayer, Rt. and Schkolnick, M. Concurrency of operations on 4contradictory. B-trees. Acts. In[. 9, 1977.

(2) nirstion(I1) does not containe kj. Theye are also two sub- (FNPS791
cses. (i) milralion(T..) contains ki. Let the page read in Fagin, Ii., Nievergelt, J., Pippenger, N. and Strong, H.R.,
R: (1:) be. p. 11 holds a lock on p til finish. Since Extendible Hashing - a rast access method for dynamic files,'
R :(I) <'R v (12), 12 can read p (if it ever does) only after It ACM Transactions on Database Systems, 4, 3, September
is finished. Therefore the only possible dependency is 1, Sly. 1979.
ing to 42. therefore the interleaving is correct. (ii) RC5
milration(12) does not contan k,. In this case no conflict HIC suM n CaA Partitioned two-phase locking. First.4can occur between 11 and 12 on directory entries. And since International Workshop on High-Performance Transactiondata pages are tio.-phase locked, the interleaving must be Systems, September 1985.
correct.

From the above three lemmas- one concludes that our algo. M3
rithais for concurrent sesrchlinsertioa/deletion oeain weHsu, M and Madnick, S.E. Hierarchical database decompoel-

Lo-a technique for dataha.. concurrency control. Proceed.correct. Q.E.D. inge of 2nd ACM SIGACT-SIG'MOD Sympoeium on Princi-

8. Cncluionpies of Database Systems, March 1983.

We have presented an algorithm for synchronizing concurrent VP9
opertios i extndile ashl~es Th aloritm aovetheKung, H.T. and Papaduitiriou, CMH. An optimnality theory ofsean nctnilehs is.Tealoih d h concurrency contr" for databases. ACM SIGMOD Coofer-

without having to acquire locks on the directory entries or the daaecVrcedn. 99
pages. It also allws concurrent insertion/deletion operations to M 1
proceed without having to acquire locks on the directory entries. Kung, H.T. and Robinson, J.T. Optiinitic oetiods for con-
Moreoiver, because at most a single lock is required at any time for currency control. ACM Trans. on Dai4aoas SysteM8. 8, 2.
each of thes operations, the algorithm is deadlock free. The Lig- June 1981.
rithin combines the method of verificatin used in the optimtiatic (1(583!
concurrency control algorithm and the special structures of opera- kedem, Z. and Silberschats. A- Locking prolocois- from
tiona in extendible hash Eilm together to yield a higher level o(coo- uxcluive to shiaredi locks. Joural of ACM. 30, t, Octotwr
currency as well as a lowry hrnsaaon ovred 1983.

In this paper we ignore the issues of underfiow, and compac- [LYS I
tion. We also did not discuss the issue of directory expansion (i.e., Lehman. ?IL. and Yan. S.- EffCIent ocaIng for -OnCurr*nt
doubling) extensively. However, the late can be handled bry a operations on 8-trees. ACM Trans on Dwaws Wsism 5
straightforwaird extension of the current algorithm, to require that 4. December 1981.
(1) every time a verification (i.e., re-read) of the content of the
directory entry is performed, the globa depth and the base address
of the directory are also ye-read, and that (2) the old versin of the Mond, Y. ad Rag. Y Coneunvn.- -otiu-, .m 1- -awe iai.
directory is carried wround in memory, for a specified period of bases using prepairmarv operauons D I~
time. (Incidentally, (2) can be relaxed if the biesi h ped e Stoernoiin.
used to uane into the direcory are the sufi rather than the O'Neiis5l
prefix of the pseudo kery.) If theme prove to be practical to imple- O'Neti. P Escrow trasiwoos erimuing -on"-u.-vn, -vt-or
-aent, directory expanmmo can be allowed to proee concurrently upoass First 1ni~emuaaavu a e ornov ona rimn- ~v -r manc.
ith search operains, In any cam. databose qiuicence can Trauiacuon System. Septemner .995 %

always be resorted to as the method for handling directory expan- 1'apaaiinzeaou7gl
Sion. Papanminicriou. -1- 7ze ersuzanoL ~n.i-z to.

The aigorim can also be applied to handle dynamic perfect base updates. Journau of ACM 25 4 -,c ooer
hash files J'YD84I. The dynamic perfect hash file structure employs fSK80I
a method that optimizes the space requirement of the directory Siberscmiats, A. sad K'eoern __ -lnzst'--, -n
used in an extendible hash ile, thus rendering it more practical to database systrems *ounau of Ak,7.1 '~ na
consider hie directory being memory resident. However, the struc- -D4
ture of the directory in a dynamic perfect hash file is more compii- YD4Yang, WP and Du. M.W A d'ynamic perfect aaiaunction
catad than that, of an ordinary extendible hash le, and extensions defined by an extended hash indicator taols. Proc. of VLDB
of the current algorithm muse, be sought for. 84. Singapore. August 1984.

AckwsdementL Work reported herein has been supported,
in part, by the Naval Electron~c Systems Command through con-
tract N0003S98-C-0571.

Wei-Pang Yang is currently on leave from Naitionall Chiao-
T~ng University, Taiwan, R.O.C., on a grant from Ministry of
Education, R.O.C.

0 .1

16,.

r

r
'I

t'-. C V VENt C. *-W~~ ~ * -. *
-' I - - .

